Photonic superdiffusive motion in resonance line radiation trapping Partial frequency redistribution effects.

نویسندگان

  • A R Alves-Pereira
  • E J Nunes-Pereira
  • J M G Martinho
  • M N Berberan-Santos
چکیده

The relation between the jump length probability distribution function and the spectral line profile in resonance atomic radiation trapping is considered for partial frequency redistribution (PFR) between absorbed and reemitted radiation. The single line opacity distribution function [M. N. Berberan-Santos et al., J. Chem. Phys. 125, 174308 (2006)] is generalized for PFR and used to discuss several possible redistribution mechanisms (pure Doppler broadening; combined natural and Doppler broadening; and combined Doppler, natural, and collisional broadening). It is shown that there are two coexisting scales with a different behavior: the small scale is controlled by the intricate PFR details while the large scale is essentially given by the atom rest frame redistribution asymptotic. The pure Doppler and combined natural, Doppler, and collisional broadening are characterized by both small- and large-scale superdiffusive Levy flight behaviors while the combined natural and Doppler case has an anomalous small-scale behavior but a diffusive large-scale asymptotic. The common practice of assuming complete redistribution in core radiation and frequency coherence in the wings of the spectral distribution is incompatible with the breakdown of superdiffusion in combined natural and Doppler broadening conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photonic superdiffusive motion in resonance radiation trapping.

In this work we consider the relation between the jump length probability density function and the line shape function in resonance radiation trapping in atomic vapors. The two-sided jump length probability density function suitable for a unidimensional formulation of radiative transfer is also derived. As a side result, a procedure to obtain the Maxwell distribution of velocities from the Maxw...

متن کامل

Theory of radiation trapping by the accelerating solitons in optical fibers

We present a theory describing trapping of the normally dispersive radiation by the Raman solitons in optical fibers. Frequency of the radiation component is continuously blue shifting, while the soliton is red shifting. Underlying physics of the trapping effect is in the existence of the inertial gravitylike force acting on light in the accelerating frame of reference. We present analytical ca...

متن کامل

Thermal radiation in photonic crystals

We analyze the properties of thermal radiation in photonic crystals and show that the spectral energy density, the spectral intensity, and the spectral hemispherical power are only limited by the total number of available photonic states and their propagation characteristics. In addition, we show that the central quantity that determines these thermal radiation characteristics is the area of th...

متن کامل

Simulations of Zeeman - split Ca II K - line Stokes profiles with angle - dependent partial redistribution

The formulation of the polarized radiative transfer equations for Zeeman-split spectral lines is still incomplete for cases with frequency-dependent line source function, e.g. when partial frequency distribution (PRD) of line photons occurs (strong resonance lines). Under the well-founded assumption that the field-free approximation works equally well for lines with partial redistribution as fo...

متن کامل

Effect of motions in prominences on the helium resonance lines in the extreme ultraviolet

Context. Extreme ultraviolet resonance lines of neutral and ionised helium observed in prominences are difficult to interpret as the prominence plasma is optically thick at these wavelengths. If mass motions are taking place, as is the case in active and eruptive prominences, the diagnostic is even more complex. Aims. We aim at studying the effect of radial motions on the spectrum emitted by mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 126 15  شماره 

صفحات  -

تاریخ انتشار 2007